Respiratory evaporative water loss during hovering and forward flight in hummingbirds.

نویسندگان

  • Donald R Powers
  • Philip W Getsinger
  • Bret W Tobalske
  • Susan M Wethington
  • Sean D Powers
  • Douglas R Warrick
چکیده

Hummingbirds represent an end point for small body size and water flux in vertebrates. We explored the role evaporative water loss (EWL) plays in management of their large water pool and its use in dissipating metabolic heat. We measured respiratory evaporative water loss (REWL) in hovering hummingbirds in the field (6 species) and over a range of speeds in a wind tunnel (1 species) using an open-circuit mask respirometry system. Hovering REWL during the active period was positively correlated with operative temperature (T(e)) likely due to some combination of an increase in the vapor-pressure deficit, increase in lung ventilation rate, and reduced importance of dry heat transfer at higher T(e). In rufous hummingbirds (Selasphorus rufus; 3.3g) REWL during forward flight at 6 and 10 m/s was less than half the value for hovering. The proportion of total dissipated heat (TDH) accounted for by REWL during hovering at T(e)> 40°C was <40% in most species. During forward flight in S. rufus the proportion of TDH accounted for by REWL was ~35% less than for hovering. REWL in hummingbirds is a relatively small component of the water budget compared with other bird species (<20%) so cutaneous evaporative water loss and dry heat transfer must contribute significantly to thermal balance in hummingbirds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hovering and forward flight energetics in Anna's and Allen's hummingbirds.

Aerodynamic theory predicts that the mechanical costs of flight are lowest at intermediate flight speeds; metabolic costs of flight should trend similarly if muscle efficiency is constant. We measured metabolic rates for nine Anna's hummingbirds (Calypte anna) and two male Allen's hummingbirds (Selasphorus sasin) feeding during flight from a free-standing mask over a range of airspeeds. Ten of ...

متن کامل

Flight thermogenesis and energy conservation in hovering hummingbirds

As the smallest homeotherms, hummingbirds suffer from low thermal inertia and high heat loss. Flapping flight is energetically expensive, and convective cooling due to wing and air movements could further exacerbate energy drain. Energy conservation during flight is thus profoundly important for hummingbirds. The present study demonstrates that heat produced by flight activity can contribute to...

متن کامل

Resolution of a paradox: hummingbird flight at high elevation does not come without a cost.

Flight at high elevation is energetically demanding because of parallel reductions in air density and oxygen availability. The hovering flight of hummingbirds is one of the most energetically expensive forms of animal locomotion, but hummingbirds are nonetheless abundant at high elevations throughout the Americas. Two mechanisms enhance aerodynamic performance in high-elevation hummingbirds: in...

متن کامل

Heat dissipation during hovering and forward flight in hummingbirds.

Flying animals generate large amounts of heat, which must be dissipated to avoid overheating. In birds, heat dissipation is complicated by feathers, which cover most body surfaces and retard heat loss. To understand how birds manage heat budgets during flight, it is critical to know how heat moves from the skin to the external environment. Hummingbirds are instructive because they fly at speeds...

متن کامل

Hummingbird hovering energetics during moult of primary flight feathers.

How does a hovering hummingbird compensate for the loss of flight feathers during moult when the mechanism of lift force generation by flapping wings is impaired? The flight performance of five individual ruby-throated hummingbirds with moulting primary flight feathers and reduced wing area was compared with that before their moult. Hummingbirds were flown in reduced air densities using normoxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comparative biochemistry and physiology. Part A, Molecular & integrative physiology

دوره 161 2  شماره 

صفحات  -

تاریخ انتشار 2012